
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 17 October 2022

Markus Püschel, David Steurer

François Hublet, Goran Zuzic, Tommaso d’Orsi, Jingqiu Ding

Algorithms & Data Structures Exercise sheet 4 HS 22

�e solutions for this sheet are submi�ed at the beginning of the exercise class on 24 October 2022.

Exercises that are marked by
∗

are “challenge exercises”. �ey do not count towards bonus points.

You can use results from previous parts without solving those parts.

Master �eorem. �e following theorem is very useful for running-time analysis of divide-and-

conquer algorithms.

�eorem 1 (Master theorem). Let a,C > 0 and b ≥ 0 be constants and T : N → R+ a function such
that for all even n ∈ N,

T (n) ≤ aT (n/2) + Cnb. (1)

�en for all n = 2k, k ∈ N,

• If b > log2 a, T (n) ≤ O(nb).

• If b = log2 a, T (n) ≤ O(nlog2 a · log n).

• If b < log2 a, T (n) ≤ O(nlog2 a).

If the function T is increasing, then the condition n = 2k can be dropped. If (1) holds with “=”, then we
may replace O with Θ in the conclusion.

�is generalizes some results that you have already seen in this course. For example, the (worst-case)

running time of Karatsuba algorithm satis�es T (n) ≤ 3T (n/2) + 100n, so a = 3 and b = 1 <
log2 3, hence T (n) ≤ O(nlog2 3). Another example is binary search: its running time satis�es T (n) ≤
T (n/2) + 100, so a = 1 and b = 0 = log2 1, hence T (n) ≤ O(log n).

Exercise 4.1 Applying Master theorem.

For this exercise, assume that n is a power of two (that is, n = 2k, where k ∈ {0, 1, 2, 3, 4, . . .}).

a) Let T (1) = 1, T (n) = 4T (n/2)+100n for n > 1. Using Master theorem, show that T (n) ≤ O(n2).

Solution:

We can apply �eorem 1 with a = 4, b = 1 and C = 100. In this case, b < log2 a, and therefore the

by the Master theorem we have T (n) ≤ O(nlog2 a) = O(n2).

b) Let T (1) = 5, T (n) = T (n/2) + 3
2n for n > 1. Using Master theorem, show that T (n) ≤ O(n).

Solution:

We can apply �eorem 1 with a = 1, b = 1 and C = 3
2 . In this case, b > log2 a, and therefore the

by the Master theorem we have T (n) ≤ O(nb) = O(n).



c) Let T (1) = 4, T (n) = 4T (n/2) + 7
2n

2
for n > 1. Using Master theorem, show that T (n) ≤

O(n2 log n).

Solution:

We can apply �eorem 1 with a = 4, b = 2 and C = 7
2 . In this case, b = log2 a, and therefore the

by the Master theorem we have T (n) ≤ O(nlog2 a · log n) = O(n2 log n).

�e following de�nitions are closely related to O-Notation and are also useful in running time analysis

of algorithms.

De�nition 1 (Ω-Notation). Let n0 ∈ N, N := {n0, n0 + 1, . . .} and let f : N → R+
. Ω(f) is the set

of all functions g : N → R+
such that f ∈ O(g). One o�en writes g ≥ Ω(f) instead of g ∈ Ω(f).

De�nition 2 (Θ-Notation). Let n0 ∈ N, N := {n0, n0 + 1, . . .} and let f : N → R+
. Θ(f) is the set

of all functions g : N → R+
such that f ∈ O(g) and g ∈ O(f). One o�en writes g = Θ(f) instead of

g ∈ Θ(f).

Exercise 4.2 Asymptotic notations.

a) Give the (worst-case) running time of the following algorithms in Θ-Notation.

1) Karatsuba algorithm.

Solution:

Θ(nlog2(3))

2) Binary Search.

Solution:

Θ(log2(n))

3) Bubble Sort.

Solution:

Θ(n2)

b) (�is subtask is from January 2019 exam). For each of the following claims, state whether it is

true or false. You don’t need to justify your answers.

claim true false

n
logn ≤ O(

√
n) � �

log(n!) ≥ Ω(n2) � �

nk ≥ Ω(kn), if 1 < k ≤ O(1) � �

log3 n
4 = Θ(log7 n

8) � �

Solution:

2



claim true false

n
logn ≤ O(

√
n) � �

log n! ≥ Ω(n2) � �

nk ≥ Ω(kn) � �

log3 n
4 = Θ(log7 n

8) � �

c) (�is subtask is from August 2019 exam). For each of the following claims, state whether it is

true or false. You don’t need to justify your answers.

claim true false

n
logn ≥ Ω(n1/2) � �

log7(n
8) = Θ(log3(n

√
n)) � �

3n4 + n2 + n ≥ Ω(n2) � �

(∗) n! ≤ O(nn/2) � �

Solution:

claim true false

n
logn ≥ Ω(n1/2) � �

log7(n
8) = Θ(log3(n

√
n)) � �

3n4 + n2 + n ≥ Ω(n2) � �

(∗) n! ≤ O(nn/2) � �

Note that the last claim is challenge. It was one of the hardest tasks of the exam. If you want a 6

grade, you should be able to solve such exercises.

Solution:

All claims except for the last one are easy to verify using either the theorem about the limit of
f(n)
g(n)

or simply the de�nitions of O,Ω and Θ. �us, we only present the solution for the last one.

Note that for all n ≥ 1,

n! ≥ 1 · 2 · · ·n ≥ dn/10e · · ·n ≥ dn/10e0.9n ≥ (n/10)0.9n .

Let’s show that (n/10)0.9n grows asymptotically faster than nn/2
.

lim
n→∞

nn/2

(n/10)0.9n
= lim

n→∞
100.9n · n−0.4n = lim

n→∞
(109/4/n)0.4n = 0 .

3



Hence it is not true that (n/10)0.9n ≤ O(nn/2) and so it is not true that n! ≤ O(nn/2).

Sorting and Searching.

Exercise 4.3 One-Looped Sort (1 point).

Consider the following pseudocode whose goal is to sort an array A containing n integers.

Algorithm 1 Input: array A[0 . . . n− 1].

i← 0
while i < n do

if i = 0 or A[i] ≥ A[i− 1] then:

i← i + 1
else

swap A[i] and A[i− 1]
i← i− 1

(a) Show the steps of the algorithm on the input A = [10, 20, 30, 40, 50, 25] until termination. Specif-

ically, give the contents of the array A and the value of i a�er each iteration of the while loop.

Solution:

�e initial state of the algorithm is:

A = [101010, 20, 30, 40, 50, 25] i = 0

We bolded the element A[i] for convenience. In the �rst 5 steps, the algorithm executes i← i + 1
and gets to the state i = 5 without changing the array.

A = [10,202020, 30, 40, 50, 25] i = 1

A = [10, 20,303030, 40, 50, 25] i = 2

A = [10, 20, 30,404040, 50, 25] i = 3

A = [10, 20, 30, 40,505050, 25] i = 4

A = [10, 20, 30, 40, 50,252525] i = 5

�en, in the next 3 steps, the algorithm moves the element 25 into its correct sorted position in the

array:

A = [10, 20, 30, 40,252525, 50] i = 4

A = [10, 20, 30,252525, 40, 50] i = 3

A = [10, 20,252525, 30, 40, 50] i = 2

4



A�er that, in the next 4 steps, the algorithm again executes i← i+ 1 until i = n and we are done.

A = [10, 20, 25,303030, 40, 50] i = 3

A = [10, 20, 25, 30,404040, 50] i = 4

A = [10, 20, 25, 30, 40,505050] i = 5

A = [10, 20, 25, 30, 40, 50] i = 6

(b) Explain why the algorithm correctly sorts any input array. Formulate a reasonable loop invariant,

prove it (e.g., using induction), and then conclude using invariant that the algorithm correctly sorts

the array.

Hint: Use the invariant “at the moment when the variable i gets incremented to a new value i = k for
the �rst time, the �rst k elements of the array are sorted in increasing order”.

Solution:

We prove the hinted loop invariant by induction.

• Base Case.
A�er the �rst while-loop iteration we always have i = 1, and the �rst element is trivially

sorted.

• Induction Hypothesis.
Assume now that the hypothesis for 1 ≤ k ≤ n: assume that the variable i is, for the �rst

time, equal to k, and the �rst k elements are sorted in increasing order.

• Inductive Step.
We must show that the property holds when i becomes k + 1 for the �rst time.

Suppose i = k for the �rst time. Examining the algorithm, we see that the algorithm inserts

A[k] into A[0 . . . k] by moving A[i] to the le� until it is in its correct place (i.e., its le� neighbor

is not larger). �is phase is the same method as in a single phase of the InsertionSort algorithm.

�is makes the �rst k+ 1 elements sorted, as required. �en, the algorithm increments i until

i = k + 1 (for the �rst time), proving the claim.

Proving this loop invariant immediately implies that, at termination when i = n, the �rst n ele-

ments are sorted, meaning that the entire array is sorted.

(c) Give a reasonable running-time upper bound, expressed in O-notation.

Solution:

Consider the above loop invariant for i = 1, 2, . . . , n. For each value k ≥ 1, between the �rst time

i = k and the �rst time i = k + 1 there are O(k) in-between steps. Since the algorithm terminates

when i = n, the number of steps required is O(1) + O(2) + O(3) + . . . + O(n− 1) = O(n2). �e

�nal running time is upper-bounded O(n2).

Remark: On a reverse-sorted array, it can be shown that the algorithm takes Ω(n2) steps, hence the
above O(n2)-bound cannot be improved.

Exercise 4.4 Searching for the summit (1 point).

5



Suppose we are given an array A[1 . . . n] with n unique integers that satis�es the following property.

�ere exists an integer k ∈ [1, n], called the summit index, such that A[1 . . . k] is a strictly increasing

array and A[k . . . n] is a strictly decreasing array. We say an array is valid is if satis�es the above

properties.

(a) Provide an algorithm that �nd this k with worst-case running time O(log n). Give the pseudocode

and give an argument why its worst-case running time is O(log n).

Note: Be careful about edge-cases! It could happen that k = 1 or k = n, and you don’t want to peek
outside of array bounds without taking due care.

Solution:

�e summit index can be found using the following algorithm:

Algorithm 2 Find the summit

function findSummitIndex(T , i, j)

m← b(i + j)/2c
if j = i then

return i

if T [m + 1] < T [m] then . m is right of the summit (or is the summit)

return findSummitIndex(T, i,m) . keep searching in the le� half

else . m is strictly le� of the summit

return findSummitIndex(T,m + 1, j) . keep searching in the right half

Input: Valid array T of length n with unique elements

Output: findSummitIndex(T, 1, n)

LetA(n) be the worst-case running time of this algorithm on an input array of length n. �en, A(n)
is such that A(n) ≤ A(n/2) +C where C is a constant, since a constant number of operations are

performed before a recursive call is performed on an array twice smaller. �is isA(n) ≤ 1·A(n/2)+
Cn0

, hence, by the Master theorem, we haveA(n) = O(log n) (case log a = log 1 = 0 = b, yielding

A(n) = O(nb log n) = O(n0 log n) = O(log n)).

(b) Given an integer x, provide an algorithm with running time O(log n) that checks if x appears in the

array of not. Describe the algorithm either in words or pseudocode and argue about its worst-case

running time.

Solution:

Consider the binary search algorithm for sorted integer arrays from the lecture. More precisely,

let the binary search algorithm for arrays sorted in ascending order be denoted by BS
↑
, while the

binary search for arrays sorted in descending order is BS
↓
. Assume that for c ∈ {↑, ↓}, BSc(T, x)

returns true if x is in T , and false otherwise. �ese two algorithms have running times O(log n).

We can now use BS
↑
, BS
↓
, and findSummitIndex as subroutines to �nd our element:

Algorithm 3 Search in a valid array

Input: Valid integer array T of length n with unique elements, integer x
k ← findSummitIndex(T, 1, n)
k1 ← BS

↑(T [1..k], x) . search in array T [1..k], sorted in ascending order

k2 ← BS
↓(T [k + 1..n], x) . search in array T [k + 1..n], sorted in descending order

Output: k1 or k2

6



�is algorithm runs in time O(log n) + O(log n) + O(log n) = O(log n), since every of the three

subroutines has O(log n) running times.

Exercise 4.5 Counting function calls in loops (cont’d) (1 point).

For each of the following code snippets, compute the number of calls to f as a function of n. Provide

both the exact number of calls and a maximally simpli�ed, tight asymptotic bound in big-O notation.

Algorithm 4
(a) i← 0

while 2i < n do
j ← i
while j < n do

f()
j ← j + 1

i← i + 1

Solution:

Given i, the inner loop performs

∑n−1
j=i 1 = (n− 1)− i + 1 = n− i calls to f . �e full algorithm

thus performs

∑dlog2 ne−1
i=0 (n− i) = ndlog2 ne−

∑dlog2 ne−1
i=0 i = ndlog2 ne−

(dlog2 ne−1)dlog2 ne
2 =

O(n log n) calls to f .

Algorithm 5
(b) i← n

while i > 0 do
j ← 0
f()
while j < n do

f()
k ← j
while k < n do

f()
k ← k + 1

j ← j + 1

i← b i2c

Solution:

Given i and j, the innermost loop performs

∑n−1
k=j 1 = n − j calls to f . Hence, the second loop

(guarded by j < n) performs 1 +
∑n−1

j=0 (1 + (n− j)) = 1 +
∑n−1

j=0 ((n + 1)− j) = 1 +
∑n+1

j=2 j =
(n+1)(n+2)

2 calls to f . Finally, we observe that, if n > 1, the outermost loop performs exactly

blog2 nc+ 1 iterations: writing n = b` . . . b0
2

in binary notation with ` = blog2 nc and b` = 1, the

variable i contains exactly b` . . . bi
2

a�er i iterations, and is zero a�er exactly `+ 1 of them. Hence,

the full algorithm performs (blog2 nc+ 1) (n+1)(n+2)
2 = O(n2 log n) calls to f .

7


